Число — одно из основных понятий математики, возникшее впервые в связи с потребностями счета предметов и совершенствовавшееся затем по мере развития математических знаний. Уже в трудах античных ученых было установлено, что ряд натуральных чисел бесконечен (III в. до н. э.). Проблемы бесконечности натурального ряда, ряда простых чисел и построение названий для сколь угодно больших чисел обсуждаются в знаменитом произведении Евклида «Начала» и в книге Архимеда «Об исчислении песка» («Псаммит»). Представление чисел в памяти компьютера имеет ограничения, связанные с ограниченностью объёма памяти, выделяемого под числа. Даже натуральные числа представляют собой математическую идеализацию, ряд натуральных чисел бесконечен. На объем же памяти ЭВМ накладываются физические ограничения.
Число Пи
Целые числа, получаемые объединением натуральных чисел с множеством отрицательных чисел и нулём, обозначаются . Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления). Натуральные числа, получаемые при естественном счёте; множество натуральных чисел обозначается . (иногда к множеству натуральных чисел также относят ноль, то есть ). Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Сложение и умножение натуральных чисел коммутативны и ассоциативны, а умножение натуральных чисел дистрибутивно относительно сложения и вычитания.
- Также, если не оговорено противное, термины «числа» и «множество чисел» — будут являться синонимами.
- Такое отношение к числу было принято Платоном, а позже неоплатониками.
- Это подтверждается лингвистическим анализом названий первых чисел.
- Все дальнейшие расширения понятия числа уже не были более вызваны потребностями счета и измерения, а явились следствием развития науки.
В математике для множеств существует величина мощности множества, аналогичная количеству элементов в нём. Развитие этого представления для бесконечных множеств привело к дальнейшему обобщению понятия числа. Сейчас говорят о кардинальных числах, которые описывают множества из любого числа элементов — конечного или бесконечного. P-адические числа можно рассматривать как элементы поля, являющегося пополнением поля рациональных чисел при помощи т. P-адического нормирования, аналогично тому, как поле действительных чисел определяется как его пополнение при помощи обычной абсолютной величины.
Виды чисел
Действительные числа обычно представляются в виде чисел с плавающей запятой. При этом лишь некоторые из действительных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями. В повседневной жизни, в математике, в точных науках почти повсеместно используются числа. При помощи чисел происходит измерение различных величин. Числа помогают количественно характеризовать различные свойства предметов.
Простые числа
Казалось, что задача, приводящаяся к решению такого квадратного уравнения, не имеет решения. Необходимость введения отрицательных чисел была связана с развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного числа возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Отрицательные числа систематически применялись при решении задач ещё в VI—XI веках в Индии и истолковывались примерно так же, как это делается в настоящее время.
Любой объект является исчислимым и измеряемым, потому что он сконструирован по схеме числа (или величины). Поэтому всякое явление может рассматриваться математикой. Разум воспринимает природу подчинённой числовым закономерностям именно потому, что сам строит её в соответствии с числовыми закономерностями. Так объясняется возможность применения математики в изучении природы. Понятие числа возникло в глубокой древности из практической потребности людей и усложнялось в процессе развития человечества. Область человеческой деятельности расширялась и соответственно, возрастала потребность в количественном описании и исследовании.
Представление чисел в памяти компьютера
Сначала понятие числа определялось теми потребностями счёта и измерения, которые возникали в практической деятельности человека, всё более впоследствии усложняясь. Позже число становится основным понятием математики, и потребности этой науки определяют дальнейшее развитие этого понятия. На объём же памяти ЭВМ накладываются физические ограничения. Для представления чисел отводится некоторое определённое число ячеек (обычно двоичных, бит — от BInary digiT) памяти. В случае, если в результате выполнения операции полученное число должно занять больше разрядов, чем отводится в ЭВМ, результат вычислений становится неверным — происходит так называемое арифметическое переполнение.
Иерархия чисел
Обоснование понятия натурального числа стало необходимым лишь в середине XIX в. В связи с развитием аксиоматического метода в математике и разработкой основ математического анализа. В работах немецкого математика Кантора на основании понятия множеств, их равномощности, т. Сопоставимости элементов одного множества элементам другого. Число предметов в совокупности, число элементов во множестве определяется как то общее, что имеет данная совокупность и всякая другая ей равномощная. Другое понятие натурального числа было дано итальянским математиком Пеано на основании сформулированных им аксиом.
Понятие числа служит исходным для многих математических теорий. Числа находят широкое применение и в физике, механике, астрономии, химии и многих других науках. В системах компьютерной алгебры, Питоне и некоторых других языках программирования числа представлены в виде объектов, над которыми определены операции сложения, умножения, возведения в степень и обратные к ним.
Для сокращения записи чисел великанов (больших чисел) давно используется система величин, в которой числа великаны имеют свои названия и записи в двух вариантах. Математика должна быть точной и не допускать двусмысленности. Цифры это обозначения чисел и из число фибоначчи это них могут состоять только другие обозначения чисел, но никак не сами числа. Число – это количественная характеристика чего-либо. Используется для подсчета количества, маркировки, измерения величин и т.д.
- Позже число становится основным понятием математики, и потребности этой науки определяют дальнейшее развитие этого понятия.
- Но начинается все именно со счета, точнее с устного счета.Без чисел было бы весьма затруднительно ввести градацию чего-либо, сложно было бы производить сравнения.
- Сначала понятие числа определялось теми потребностями счёта и измерения, которые возникали в практической деятельности человека, всё более впоследствии усложняясь.
- Примитивный счёт предметов заключался «в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона», которым у большинства народов являлись пальцы («счёт на пальцах»).
- Область человеческой деятельности расширялась и соответственно, возрастала потребность в количественном описании и исследовании.
Комплексные числа используются при решении задач квантовой механики, гидродинамики, теории упругости и пр. Комплексные числа подразделяются на алгебраические и трансцендентные. При этом каждое действительное трансцендентное является иррациональным, а каждое рациональное число — действительным алгебраическим. Более общими (но всё ещё счётными) классами чисел, чем алгебраические, являются периоды, вычислимые и арифметические числа (где каждый последующий класс шире, чем предыдущий).
Строго говоря, понятия число и множество чисел — разные понятия. Также, если не оговорено противное, термины «числа» и «множество чисел» — будут являться синонимами. Осознание бесконечности натурального ряда явилось следующим важным шагом в развитии понятия натурального числа. Об этом есть упоминания в трудах Евклида и Архимеда и других памятниках античной математики III века до н.
Раньше для обозначений чисел использовались черточки, однако для записи больших значений такой способ был крайне неудобен. Представьте, сколько времени бы заняло рисование черточек для записи, к примеру, числа 745. В данной публикации мы рассмотрим определение числа, перечислим его основные виды и отличия от цифры, разберем принцип образования чисел и их произношение. Представленная информация сопровождается примерами для лучшего понимания.